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COMPRESSIVE STRENGTH OF FLANGES *

By ELBRIDGE Z. STOWELL

SUMMARY

The maximum compressive siress carried by a hinged flange
is computed from a deformation theory of plasticity combined
with the theory for finite deflections for this structure. The com-
puted siresses agree well with those found experimentally.
Empirical observation indicates thai the results will also apply
fairly well to the more commonly used flanges which are not
hinged.

INTRODUCTION

Ordinarily the ability of columns and plates to carry
additional load does not entirely cease when they buckle.
If the load is increased sufficiently beyond the buckling
load, they will ultimately refuse to carry more load, with
subsequent permanent distortion. In the case of columns,
the maximum Joad is not far above the buckling load (sece
reference 1); in the case of plates, there may be a consider-
able spread between the two loads.

The first essential requirement for the solution of the
problem of maximum load is the existence of a finite-
deflection theoryfor the behavior of the structure. Maximum
load always occurs at some finite deflection or distortion
beyond the buckling load. The problem of the load for a
given distortion is thus nonlinear even without the intro-
duction of plasticity. Few such solutions exist for post-
buckling behavior of structures even in the elastic region.

The second essential requirement for computation of
maximum load is the ability to describe the nonlinear be-
havior of the structure that results from plasticity of the
material. Neither columns nor plates would ever possess
a maximum load in compression, if the material of which the
structure was made obeyed Hooke’s law at all times, al-
though they might be tremendously distorted. Ibp such a
structure it would always be possible to add still another
increment of load, which would result in still another incre-
ment of distortion. The question of a maximum load must
therefore be directly linked with the failure of the material
to obey Hooke’s law—that is, with the plasticity of the
material and the nonlinear behavior of the structure which
results from that plasticity.

For the calculation of the maximum load carried by a
buckled structure, these two essential but difficult require-
ments must be met. This report treats the maximum com-
pressive strength of a simple plate structure for which the
effects of both types of nonlinearity can be found—that is,
the compressed flange hinged along one side edge.

1 Supersedes NACA TN 2020. **Compressive Strength ol Flanges” by Elbridge Z. Stowell, 1950.
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The maximum load carried by a long hinged flange is
computed as follows: The strain distribution across the
flange at any angle of twist is found from knowledge of non-
linearity due to finite deflection. This elastic strain dis-
tribution is assumed to persist into the plastic region. This
strain distribution is transformed, with the aid of knowledge
of nonlinearity due to plasticity, into a stress distribution
by means of some appropriate stress-strain relation. The
load carried by the flange at the particular twist is then
obtained by integrating the stress distribution across the
flange. The load is then investigated to see if it has a
maximum value as the twist increases; the maximum load
should correspond with the experimentally observed maxi-
mum load.

Experimental data on the behavior of hinged flanges have
been obtained in the Langley Structures Research Division
by the methods of reference 2. 'These data are used in the
present report for comparison with theoretical relations.

The theoretical treatment of the behavior of a hinged
flange commences in the next section with a discussion of the
effects due to finite deflections. Details of the theoretical
calculations are presented in two appendixes.

NONLINEAR BEHAVIOR DUE TO FINITE DEFLECTION

Theoretical strain relations.—A flange of length L, width
b, and thickness ¢ is shown in figure 1 together with the
coordinate system. The flange is hinged along the line z=0
and has a free edge along the line z=5. Compression is
applied longitudinally.

The load is applied uniformly at first. The theory of
appendix A shows that, for strains below a certain critical
strain e, the flange will shorten without twisting. The
critical strain e, al which twisting begins is shown to be

_ gy 1wy
Gzr—_m+3 §? (1)

where p is Poisson’s ratio.

As the load is increased beyond that required to start
twisting, both the middle-surface strain and the stress dis-
tribution across the flange width become nonuniform, larger
than the average at the hinge, less than the average at the
free edge. The middle-surface strain at any point (z,z) of
the flange is shown by the theory of appendix A to be

w5 Bmt N 4K
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in which %? is a parameter lying between 0 and 1 which
specifies the amount of twist,

/2
o J1—k%sin® &
is the complete elliptic integral of the first kind, and

W e +i(F)

m2=12|:ea,,—2(1+“)

The average middle-surface strain e, in the elastic range is
the average stress divided by the elastic modulus E.

x

(b) With large distortion.
(¢) Enlargement of section aac’c.
F16URE 1.~Cruciform section, consisting of four identical flanges, before and after buckling.
Coordinate system is shown on one flange.

(a) Without distortion.

Thus, if a value is assigned to %* (a certain amount of
twist), both the quantities K and m? are determined; the
strain at any point (z,z) may then be computed.

Equation (22) may be simplified as shown in appendix A
to the following expression which holds over the essentially
straight part of the flange:

2
€z=€av+i‘ (fav_fcr) (1 —3 'Z_z) (Zb)

Theory also shows that over most of the flange length
(except at the middle and extreme ends) the relation between
the middle-surface strain at the hinge ¢, the average middle-
surface strain over the width of the flange ¢,,, and the critical
strain e, is

4 5
eau='§ €h+§ €or (3)

and the rotation ¢, at the middle of the flange is

1

— __t -1
maz= V5 5 cosh i (4a)
or approximately
Gmaz=1.37 f Vew—es—1.55 % (4b)

Relations (1), (2), (3), and (4) are susceptible to experimental
check, and the following section describes the results of
experiments designed to test these relations.

Experimental check of strain relations.—The hinged
flange shown in figure 1 was realized experimentally by the
cruciform column shown under test in figure 2. The cruci-
form column has four identical flanges which, if equally
loaded, will twist at the same time without restraint to each
other; thus the condition of zero restraint against rotation is
fulfilled. The columns were all sufficiently short to cause
them to buckle by twisting rather than by Euler bending.

The tests included measurement of the stress-strain curve
for the material from which the different groups of specimens
were made, determination of the buckling and maximum load
for each specimen, a study of the strain distribution across
the flanges of two specimens, and a measurement of rotation
of each specimen at the middle.

Results of the buckling-load measurements and their con-
nection with the stress-strain curves for the specimens were
given in reference 3 and are shown in figure 3 of this report
where the buckling stress is plotted against the calculated
elastic buckling strain. Because the experimental points
follow along the stress-strain curve, the proper reduced
modulus for pure twisting in the plastic range is concluded
to be the secant modulus, which agrees with the theoretical
value of reference 3.

The relation between the computed and experimental
middle-surface strain distribution over the width of the
flange for one specimen at the quarter height for a number
of different loads is shown in figure 4. The highest average
stresses exceeded the proportional limit of the material.
The measured strains for the four flanges were averaged
to give the points shown in the figure. These average strains
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were somewhat larger than the ratio of average stress to I
at the very highest loads where plasticity reduced the aver-
age effective modulus. From the experimentally observed
average strain across the flange at each load and the critical
strain at which buckling began, the corresponding theoretical
strain distributions were computed from equation (2b) and
are presented as the curves in figure 4. This calculated
strain distribution agrees fairly well with that observed
experimentally, -~ T '
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FigUuRE 3.—Experimental values of the buckling stress for cruciform-section columns of
245-T4 extruded aluminum alloy compared with the compressive stress-strain curve for

that material.

The relation between average strain, corner strain, and
critical strain given by equation (3) was investigated experi-
mentally. From measurement of the strain in two opposite
flanges of one buckled specimen, averages were taken to
give mean values of ¢, and ¢. The critical strain e, was
also accurately known. Figure 5 shows the theoretical rela-
tion of equation (3) compared with the averaged experi-
mental points. The agreement is good. The strain e,
ceases to be elastic at a value of 0.0025, so that both the
curve and the points extend well into the plastic region.
The persistence of the agreement between equation (3) and
the experimental points up to the highest strains indicates
that, even though equation (3) was derived on an elastic
basis, it is a good approximation in the plastic region also.

Figure 6 compares the theoretical rotation of three cruci-
form specimens of widely different Iengths with the meas-
ured rotations. The ordinate in figure 6 is the shortening
8/L, which is the hinge strain ¢, Rotation was measured
by a pointer attached to the flange and moving past a
circular scale. Equation (4b) was used to compute the
theoretical rotations. The agreement between theory and
experiment is good in this_case also.

NONLINEAR BEHAVIOR DUE TO PLASTICITY OF THE
MATERIAL
The material of the flanges (24S-T aluminum alloy) is
defined by the stress-strain curve of figure 3. The figure
shows thal above 25 ksi the material starts to depart from

6x/073
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FIGURE 4.—Theoretical middle-surface strain distribution across a hinged flange at the
quarter-length station along a cruciform-section column compared with experiment.
(Experimental values are average for the four flanges; eer=0.0016.)
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F1GURE 5.—Theoretical middle-surface strain relation between eae, es, and e for a hinged

. 4 5
flange compared with experiment. (Gae=§ er.+§ ecr fOr Eav>5n.)

purely clastic behavior and becomes partly plastic. As a
result of this plasticity, the flanges exhibit nonlinear behavior
above about 25 ksi.

The most clementary consequence of the plastic nonlinear
behavior is the substitution of Eye for £ in the formula for
critical stress which, for a hinged flange, is (reference 3)

Ucr:Esecfcr (5)

Another consequence of the nonlinear behavior due to
plasticity is the existence of a maximum load. KExperi-
mentally, as the load is increased more and more, the twist
of the flange will increase until a value of load is reached at
which the flange ceases to carry more load; this valuc is the
maximum load. As was pointed out in the introduction,
if the material of the flange obeyed Hooke’s law strictly
at all times, the rotation of the flange would increase
indefinitely with increase in load. The existence of a maxi-
mum load is therefore directly attributable to plasticity
of the material.

As the structure twists more and more bevond the buck-
ling load, greater and greater shear strains are set up through
the thickness of the flange. The shear strains are zero at
the middle surface and have opposite signs at the faces.
These shear strains will combine with the compressive
strain already present to form a strain intensity; at a point
where the compressive strain is e, and the shear strain is v,

—
the strain intensity is el=\/ ezr"—l—%—. (In order not to have to

consider variations of ¥ through the thickness, a mean value
of 42 is used.) According to the deformation theory of

7x/0-3

6

| 1 1 L

1 1 | | ! 1
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Rotation, ¢, roodans

FIGURE 6.—Relation beiween the shortening 8/L and the rotation ¢ of a hinged flange com-
pared with experiment. t_=12'

plasticity used herein (reference 3), the value of ¢; at any

stage of deformation determines the reduced modulus of the

material at that stage.

Since the maximum load always occurs at a finite rotation
of the flange, the two effects of nonlinearity must be combined
in order to account for the maximum load. Such a com-
bination is effected in appendix B and the results are given
in the following section.

MAXIMUM LOAD OF A FLANGE

It is shown in appendix B how the maximum load on a
hinged flange may be computed from the dimensions of the
flange and the stress-strain curve for the material.

The middle-surface strain distribution across the flange
is given by equation (2a). In addition to these strains which
arise directly {rom the compressive load, there are also
shear strains in the flange due to its twist. These shear
strains become as large as two-thirds of the compressive
strains upon which they are superposed. Although, strictly
speaking, the deformation theory of plasticity has only been
shown to hold for simple loading (reference 4), its validity is
also assumed herein for complex loading. The square of
the compressive strains and the mean square of the shear
strains were added in the proper manner to give a strain
intensity. (The highly localized effects of bending at the
middle and ends have been neglected.) From the com-
pressive stress-strain curve for the material the value of the
secant modulus Fg., was read at this strain intensity. For
increasing strain intensities the compressive stress o at
any point across the width of the flange is then simply
E,.. times the compressive strain at the point. Near the
free edge the strain intensity decreases; in such a case, the
elastic modulus £ is used to compute the corresponding
stress reduction. The average stress ¢, across the flange
is then

1[0
O’(w=‘l—)‘ﬁ odz (6)

The value of ¢4, is computed for a number of different twists
until & maximum average stress o4, is found.
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Figure 7 shows the results plotted in a nondimensional
form similar to that employed in reference 2. The param-
eters used have some theoretical justification and have the
effect of making the information given by the plot largely
independent of the material. The agreement between the
computed curve and the experimental points for cruciform-
section columns is satisfactory.

The fact that maximum loads may be computed in this
case solely on the basis of deformation theory suggests that
the theory is sufficiently accurate when the stress state
changes from pure compression to combined compression
and shear, for shear strains up to two-thirds of the largest
compressive strains.

An interesting side light on this computation is revealed
by the values of stress intensity at the supported edge when
the load is a maximum. The stress intensity for eight widely
different cruciforms is a constant, to about 1 percent, equal
to about 47 ksi. (See table 1.) This value is close to the
vield stress for the material (46 ksi).

When the flanges are present in actual structures, they
are generally connected to other members which offer a
certain elastic restraint against rotation along the supported
edge. The question arises as to what effect this connection
has upon the calculations based on the assumption of a
hinge connection. The elastic restraint along the supported
edge will have two major effects: The critical strain will be
appreciably raised and the effective length L of the buckles
will be appreciably shortened. A necessary consequence is
that the rotation (which is proportional to L) is reduced

Ler @
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F1GGRE 7.—Comparison of theoretical curve for the maximum strength of 248-T4 aluminum
alloy cruciforms with test results. Compressive yield stress o.y=46 ksi. (Experimental
values for H-sections of various aluminum alloys have been added for comparison with
the theoretical curve.)

and, therefore, is more nearly of the shape of a circular sine
along the length of the flange than it would be when a hinge
is present along the joint. A third effect is the introduction
of a slight curvature across the width of the flange. When
the revised critical strain and the revised length are inserted
into the formulas of appendix A, which were derived for a
flange supported along a hinge, it is found that the rotation
and the strain relations may still be accurately predicted
for flanges with restraint along the supported edge. Such
a result seems to indicate that the small amount of trans-
verse curvature introduced by the restraint does not have
an important effect on the formulas. '

In view of the fact that the theory of appendix A applies
fairly well to flanges with restrained edges, it might be
expected that the maximum strength, also, might be given
by the same theory. Experiment shows that such is the
case; the values of maximum strength for H-sections are
included in the experimental points shown in figure 7 and
the points intermingle with the cruciform points such that
one sct cannot be distinguished from the other. The
theory of this report may then be said to apply approximately
to flanges with elastic restraint along one side edge as well
as to flanges without elastic restraint.

CAUSE OF MAXIMUM LOAD

Maximum load occurs when it is no longer possible for the
stress, on the average, to grow with increasing strain. The
natural tendency for the stress to grow is defeated by the
decrease in effective modulus.

In order to illustrate this eflect graphically, figures 8(a)
and 8(b) have been prepared. These figures illustrate the
calculated strain and stress distributions across a hinged

flange of 245-T4 aluminum alloy and of proportions %*——14

and %=12. These distributions hold over the greater part

of the flange where the bending is negligible. Up to the
critical strain of 0.002 and the critical stress of 21.5 psi, the
distributions are uniform. As the load is increased beyond
the critical value, the distributions become more and more
nonuniform as a result of twisting of the flange. With in-
creasing load, the strain increases faster at the hinge than at
the middle of the flange as shown in figure 8(a). For a time,
the corresponding stress also increases faster at the hinge
than at the middle of the flange, as shown in figure 8(b).
Eventually, however, the strain intensity at the hinge
(averaged over the thickness) becomes so large that the
modulus is greatly reduced. When that occurs, the stress at
the hinge line ceases to grow with increase in strain and even

TABLE 1.—SHOWING CONSTANCY OF STRESS INTENSITY
AT HINGE LINE AT MAXIMUM LOAD

Specimen At failure

Ter Omaz o3

bjt L (ksi) (ksi) (ksi)
8 12 45.9 45.7 46.6

9 18 40.6 40.0 45.9

10 4 44.8 4.0 47.5
10 10 37.6 38.0 47.5
11 10 33.4 36.2 47.1
12 4 37.3 39.2 46.6
13 10 25.8 3L5 48.2
14 12 2.7 3L3 48.2
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(a) Strain distribution.

FicurE S.—Theorctical middle-surface strain and stress distribution across a flange at the quarter-length station along a typical cruciform. {;=l4: b

starts to decrease (see fig. 8(b)). The maximum arca under
the stress curve, and therefore the maximum load, occurs
just as the hinge stress starts to recede.

CONCLUSIONS

A theoretical analysis of the compressive strength of
flanges, based on a deformation theory of plasticity combined
with the theory for finite deflections for this structure, and
comparison with experimental data lead to the following
conclusions:

1. The maximum load for a flange under compression and
hinged along one edge may be accurately computed from the
dimensions of the flange and the compressive stress-strain
curve for the material.

2. Maximum load occurs when, because of the onset of
plasticity, the effective modulus has been reduced to such a
Jow value that it is no longer possible for the average stress
to increase with increasing strain. Failure is not a local
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phenomenon but is an integrated effect over the cross section
of the flange.

3. For a wide variety of cruciform sections, the stress in-
tensity (averaged over the thickness) along the hinge line at
maximum load is a constant to about 1 percent. This value
of stress intensity is very close to the vield stress for the
material.

4. The fact that maximum loads mayv be computed in this
case suggests that the deformation theory of plasticity is
sufficiently accurate when the stress state changes from com-
pression to combined compression and shear in the case when
the shear strains are less than about two-thirds of the com-
pressive strains.

LANGLEY AERONAUTICAL LABORATORY,
NaTIONAL ADvisoRY COMMITTEE FOR AERONAUTICS,
LanguEY Fieup, Va., December 9, 1949.



APPENDIX A

FINITE DEFLECTION THEORY FOR A HINGED FLANGE UNDER COMPRESSION

ELLIPTIC-FUNCTION SOLUTION

The coordinate system and dimensions of the hinged flange
(one-fourth of a cruciform-section column) are shown in
figure 1 (a); the form of the distorted shape isshown in figure
1 (b). The fundamental hypothesis of the calculation is
that at any section 2=Constant there is no curvature of the
flange in the direction of z. The correctness of this hypothe-
sis is amply borne out by tests on the flanges while under
twist. With this.ssumption it becomes possible to avoid a
formalized plate treatment of the problem.

For infinitesimal rotations, the differential equation of
equilibrium for a column under the simultaneous action of a
compressive stress ¢ and torque 7" has been shown by Wagner
(reference 5) to be

GT—al) e, Ty

BT d.ba (A])
where
, 7 do . . -
G Tz St. Venant component of internal resisting
torque
do e .
al, dz component of internal torque due to applica-
| tion of compressive force. (This component
is not a resisting torque but aids the applied
torque T in twisting the colwmn; its sign is
therefore negative.)
EC, T2 t of internal resisting torque d
— BTd 3 component of internal resisting torque duc to

bending of column as it twists

For the case In which the applied torque 7' is zero, such
as for a compr csscul hinged flange, equation (A1) bccomc

dd>

(GJ‘_ g Ip) L OB!’ =0 (1\2)

As previously mentioned, equations (Al) and (A2) are
limited to infinitesimal rotations and thus cannot be used to
determine the behavior of a column above the buckling load
where rotations may become large.

In order to investigate the behavior of a compressed hinged
flange above buckling, a theory which permits the calculation
of the large deformations which may occur after buckling
must be employed. The differential equation (A2) must
therefore be amended to include the effects which appear at
finite values of the rotation ¢.

DERIVATION OF THE BASIC DIFFERENTIAL EQUATION FOR
FINITE ROTATIONS
The effects of finite rotation involve the changes in the
middle-surface strain that occur after buckling. As the
plate twists, the longitudinal fibers will be inclined at a small
angle to the hinge line as shown in figure 1 (b). As a result,
the longitudinal fibers are stretched in varying amounts and
the horizontal components of the forces along the fibers pro-
duce a torque which resists twisting of the plate. The re-
sisting torque increases very rapidly with twisting of the
plate, which thus becomes progressively stiffer. The rapid
increase of stiffness with rotation provides the required
mechanism for maintaining the rotation at a finite value.
Stretching of middle-surface fibers after buckling.—A
short section of the plate as shown in figure 1 (c¢) will have
the length ac before the plate buckles. After buckling, the
length ac’” will be greater than ac because ac’ is inclined at an
angle v, with the hinge line.  (See fig. 1 (¢).) Thus the
strain at the free edge €, due to stretehing for small values of
Yo IS

’ 2
ac —ac i

—=scC vo— 1=
¢ v 2

(A3)

—ep=

(The strain e, is positive when compressive.)

If the line aa (fig. 1 (c)) has been rotated an angle ¢ from
its original position, the free-edge fiber at ¢ moves a distance
b(¢+ds). The angle of inclination of the free-edge fiber
1s thus

b(op+de)—bo _p s do

TET dz (44)

If the point ¢ is not at the free edge but at some interior
position a distance z from the hinge line, it can similarly
be shown that

—e =% (A5)
_, 49
V=2 di (A6)

From equations (A5) and (A6), the strain e, resulting from
the stretching action can be given as

~_£G&f
=T 9 \dx

Equation (A7) gives the difference between the hinge-line
strain and the strain at any fiber due to the stretching action,

for a given position along the width of the flange. It is this
7

(A7)



S REPORT 1020—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

difference which causes the middle-surface strain distribution
after buckling to differ from the uniform strain distribution
at the instant of buckling and which will now be considered.

Middle-surface strain distribution after buckling.—A
compressive load P applied to the hinged flange will cause the
ends to approach each other by a distance 5. The unit
shortening ¢ is §/L. Equilibrium of the internal compressive
forces with the applied force P requires that

P:tEﬁb(e—}-ez) cos v, dz (A8)

The angle v, is usually so small that cos v, may be taken
as unity. Then, substituting the expression for e, from
equation (A7) into equation (A8) yields

pean T (4 Jr-palo- (2] o

The unit shortening e is therefore

. P _bj dé\2
RPVARACE (410)
The ratio P/AE is the average strain over the cross section.
If P/AE is denoted by €4, cquation (A10) becomes

e:e”+lé' (A1)

The longitudinal middle-surface strain e, at any fiber z in the
cross section is therefore

2 ~2 2
6226—*—62:6”—}“%—%(% (A12)
Moment due to axial stress after buckling.—The longi-
tudinal strain e, does not have the direction of the hinge line
but of the slightly inclined longitudinal fibers (the angle v,
equation (A6)). Consequently, Ee, has components per-
pendicular to the hinge line which. create the moment AM
resulting from the applied compressive force.
The component of Ee, perpendicular to the hinge line at

any fiber z is Fe, sin v, and for small angles is approximately
equal to FKe,z (al% As this component has a lever arm z, the

internal resisting moment AL is

1l
AAIz—Eff <ezz @>zdz
Jo dx

Substituting the expression for e, from equation (A12) into
equation (A13) results in the following relationship:

(A13)

AM=—oI, d¢+ L Eb (d ) (A14)

do . .
The term ol ”d—z is the samec term that appears in equation

(A2). The last term of equation (A14) is the required
additional term which takes into account the stretching
actions, which occur for finite rotations of the flange, and
permits the computation of the rotation ¢.

Basic differential equation of torque for a compressed
hinged flange which includes the effects of finite rotation.—
The complete differential equation of torque which replaces
equation (A2) and includes the last term of equation (A14) is

3
(GJ—JIW) —LC,,Td 3+ EbT, Z_‘i') —0 (Al5)

The constants of equation (A15) are

be ~
=

3
b

' - (A16)

b3f3

Cor="g¢
E

G=rrim

50+ u) J

Substituting equations (A16) into (A15) yields
13¢

O D
A further simplification is ¢ffected by the use of
Yo=b % ]
=3 i (A18)

The substitution of relations (A18) into cquation (A17)
gives the basic differential equation for a compressed hinged
flange

Ay,

de —{—m’y,,——-—é Vo'=0 (A19)

SOLUTION OF THE BASIC DIFFERENTIAL EQUATION
FOR FINITE ROTATION

The basic differential equation (A19) has the solution

dve

f\/c2—m2w2+%w‘*

where ¢ and & are constants of integration.

ft+b==+

(A20)

(The sign of
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the radical must be chosen so as to keep ¢ positive.) With
the condition that y=0 for §&=0 (—j—: equals zero at the cnds)

and the substitutions
m? mt 4
g__ v a2
g_2+J4 5¢
m? . [mt, 4
Chi=— i e
W= ¢4 5°¢

equation (A20) may be written

d(v,fc)
o e oo e oo

With new variables ¥ and & defined by

(A21)

(A22)

l Sill \II:.Z.Q
g ¢
(A23)

k———’i

g
cquation (A22) is transformed inlo

v

lJI
E—g 0 vl—/r Sz W

(A24)

In order to determine the constant ¢, use is made of the

condition that v,=0 for $=2—Lt or zz—lz—;. The upper limit
for equation (A24) corresponding to ng must then be ¥ =7
in order to satisfy the first of equations (A23):
I_1 w o
2t gJo y1—k%sin® ¥
or
4t (=12 A
_IJU 1—/c sin? ¥ (425)
In elliptic-function notation,
[t k)
0 1—k?sin?«
.y d (A26)
J e Of.,"::sn"‘(sin ¥)=sn"! <g1~">
0 1—k?sin®a c
Equation (A25) therefore may be written
4
_K (A27)

and equation (A24) becomes

4Kx= W da
L 0 1—k2s1n o

o ()

so that taking the elliptic sine of both sides gives

(A28)

N 4Kz
Yo=" L )

The coeflicient ¢/g is readily found from the definitions of g
and A in equations (A21). From the first of these equations

——_ 75 oy &
- 2__ —_— —_ —_
h=+/m gz—\/IZ\/e,,,, 1+ 12
and from the second
c V5, @b &
el ”Vw\ﬂ“ 5144 12

Making usec of equation (A27) leads to the general solution

1 (4TK1>2 sn <4K.r> (A29)

=15 N
Yo™V 1')\/6110 2(1+#) 12

IXllUlll(I lUlll]. Ul Lll( bUlllLlUll -\’Vlll(,,ll lb SOITe Lllll[b CO
may be obtained by using a different expression for A: Since
addition of equations (A21) gives

ﬂ'v'(,uu,u b

m2=gt b= g1 - k?) = 451)(1% k2 (A30)
it follows that
= UL
\/ﬁ k2
and that
h—lg—= T
v1+£k*
Hence,
5 4Kz \/o km 4Kz .
Yo=-5 h sn ( > 5 TR sn —L~> (A31)

With either equation (A29) or equation (A31) now avail-
able as an accurate cxpression for the fiber slope v,, it is
possible, besides checking the known formula for the critical
compressive stress, to write formulas also for the rotation
at any station along the flange, for the middle-surface strain
distribution along and across the flange, for the relation
between hinge-line, average, and critical strains, and for
the fractional shortening. The formulas will now be given
in that order.

Check of critical compressive stress.—In order to show
that equations (A29) or (A31) give the correct buckling
stress at the start of the rotation (y,=0), the behavior of the
elliptic function is considered as the rotation approacheszero.
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The preceding section showed that the angle v, is propor-
tional to A, and therefore to k. As k approaches zero, K
approaches 7/2, and the elliptic sine approaches the circular
sine. Hence for loads only slightly above the critical, from

cquation (A29),
<2 1rt>
12

Y= '\/ﬁ\/ €qp—

At the critical load, v,=0, and for loaded edges clamped,

21r1:

_(/b)*
20+u)

This is the expression given as equation (5) in the body of
the report.

Rotation of any station along the flange.—By symmetry,
the rotation of any station a distance x from either end is

given by
L £
¢=3J v d (‘2)

and so is obtained by a simple integration of the fiber angle
distribution along the length of the flange, subject to the
condition that the rotation is zero at both ends of the flange.

(A34)

(b 1 /270\2 A32 If an analytical expression for ¢ is desired, either equation
(e"”)vb=o_€"“"2(1 F 1) +_§ < L_) (432) (A29) or its alternate (A31) may be integrated. Integration
of cquation (A31) gives
This is the expression given as equation (1) in the body of — ’
the report. 'The critical compressive siress o, is obtained ¢:_’é km L f4I(I/L511 <4_K£> d 4_K_r>
by multiplying both sides of equation (A32) by the effective 2 J1Fk240K ), L L
modulus in compression fy,,. Then
\/5 m L o, 1 V1—k*sn*(4Kx/L)
Wby 1 [2at\: 2 ViR cosh™ =g cosh” Vi
—F — EAULINETLY 1Y : ViR -
o= o= 5 Lyt 15 ()] 59 (A35)
Since
m=g T TE=2E Ty
the general integral becomes
1> T 0
5 oy = —re oy (2T
¢=l20 %l:cosh‘1 —=—cosh™! Bl sn_(4_Km/L)] 4= L ‘
V1—Fk V1 —Fk? 1>2%53
=L=4
/5 ¢ _ 1 /1 —k%n*(4Kz/L) 3 1
=2 __r 1A x
o N b (2121
—
vot _ 1 r 1 x 3
=—" - ¢cosh™! — FE=_ O z =7
=2 3O iR (L 1°7L 4)
Graz= V5 ! cosh™? ————. (f;:,].)
b V1—k? L 2

Variation of middle-surface strain over length and width of flange.—The middle-surface strain e, at any distance z

from the hinge line was given in equation (A12) as

ez=ea,,+%”" 1—3 %)

The slope of the free-edge fiber v, may now be inserted in this cxpression from either equation (A29) or equation (A31).

Thus
e,=eav+—g—[ —2—((1%———(4&)](1 )sn2 ‘*—Ij_fl> (A368)
or
S 1k—2i— k2<1 z—Z) sn? (4%) (A36b)
or
€ (>+ +5km( >sn<4—KJ> :
=30 g Y ENE (A36c)
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Relationships between hinge-line, average, and critical
strains.—Along the hinge line z=0, and equations (A36)

give
. 5 @by 1 <4Kt 2] ) <4Km>
(ez)z=0—"5av+2 [eav 2(1 _‘_#)_12 T ) sn T
or
<4 k? 4K .
(fz)z 0—‘5au+ 204 1 +k‘2 sn? (—f>
Along the hinge line at x=€ and x=§f ’
_7 (t/b)? 1 4Kt) ]
(ez)z=0—2 [2(1 +#) (A37a)
or
(€demo=art o 1 (A3T)
€r)z=0— €av 241+k2 .
Along the hinge line at z==0, x=£, and z=1L,

2

(er)z -0~ €av

Thus at the cnds and at the middle the strain is uniformly

distributed across the width of the hinged flanges.
Fractional shortening.—The fractional shortening of the

flange /L (1/4 of its length is considered for convenience) is

e =

e

4 L/4
:if (62)2=0 dl‘
JOo

5[ @nd (*2)

B kw1
214K J,

5 m? E
fmﬁ+94 1+A1 <1 _I_<

where Ez[ v1—Ek? sin? o da. From cquation (A30)

= €qp

4K1> 4KJ)

m= 4Kt V1 k2% and by use of this value of m,

2 f—
==t (1) KE-E)

e (A38)

APPROXIMATE RELATIONSHIPS FOR POSTBUCKLING BEHAVIOR

The preceding relationships for the behavior of a hinged
flange when compressed beyond the buckling load may be
greatly simplified if the flange is long enough so that bending
is negligible com;:a)ared with the twist. Under such conditions

the term ECzr Z—xd; in the differential equation (A15) may be

neglected. The basic differential equation (A19) then
reduces to & simple algebraic equation

2 8
m- v ¥i2=0

The fiber angle v,.—Solutions of the preceding equation
are
¥s=0

5 /15
'n=:i:\/—§m=:i:- 5 Ve €

_(/b)
2(1+4)
The same quantities which were computed under ‘‘Elliptic
Function Solution” may now be expressed once more in
terms of the approximate solution for vs.

Rotation of flange.—The approximate rotation will be
the integral of the approximate value of v,, or

15 , z\/L 1_ =z
¢=¢7V‘"v—%f(1:><z> (z2720)
x\/ L z_ 1
o= \/ W G(w 6cr z)(‘g) (1 Z = 5)

A reference to figure 2 shows that the distribution of the
angle ¢ is nearly linear for large rotations.

and

(A39)

in which ¢.,= ; the term in length now being omitted.

and

v

. .1
The maximum value of ¢ is 5 \'em or

¢ _1 37 5 ’\/Gav —€¢p (A40)

A second approximation, which contains a small correction
term to equation (A40), may be found from the relations

lim cosh™ ———=—=log 7_2_ .
N B
and
- 4
1 K:l S
llirll 08 \/1 —k?
Since
2 4
log —=== =log —=—=—=-—log 2
7 V1T—k? 1=k ®
as k-1,
cosh™! - =K—log 2

ik

The exact rotation at the middle of the column is given by
equation (A35):

t 1
Driar= ‘\ T)‘ cosh™? ,‘/ 1 _ki
therefore, as k—1,
bmar=n5 7 (K—log 2)

— 3 < 7nL--—100‘ 0)
b\ 24t

—1.37 3 Jenn—e,,—1.55 (A41)

This corrective term 1.55 % is always a small part of ¢,
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Variation of middle-surface strain over width of flange.—
The approximate strain distribution is obtained from equa-
tion (A12) by using the approximate value of v, from equa-
tion (A39):

2
ez:€av+g (fav_"ecr) (1 —3 %) (A42)

"This result holds over most of the length of the flange but is
in error near the ends and the middle where sn (45? has

a value different from unity.

Relationship between the hinge-line, average, and critical
strains.—Along the hinge line z=0, so that, approximately

5

9
(Gz)z= OZZ €ay _Z €cr (A43)

Fractional shortening.—The approximate shortening is

LY TCORE B P S
=7 0 4 €qy 4 €cr =1z €ap 4 €cr

and therefore is identical with ¢, along the hinge line z=0.

(A44)




APPENDIX B
MAXIMUM STRENGTH OF A CRUCIFORM-SECTION COLUMN

- The deformation theory of plasticity used here states that
a relation exists between the stress intensity o¢; and the
strain intensity e; which is of the following form:

for loading (e; increasing)
0= Ehec(]'i
for unloading (e; decreasing)

(]0'1': F (l(’ri
where

Ty - 2 - -"‘ 2
o;=+o V0t —ar0, 377

2 ey v
€;== 3 €r+5 Jref +4

6., € stress and strain in the z-direction

0., €, stress and strain in the z-direction

7,v  shear stress and strain

In the case of a eruciform-seetion column compressed beyond
the buckling stress o, the value of ¢, is the stress in the

2-direction and 1s larger than o, over most of the flange
width. Also o,=0, and with Poisson’s ratio equal to 1/2,

1 . .
€:=5 €; SO that the fundamental stress-strain relation for

increasing ¢; reduces to

Vo372 = Il ef—l—%:

in which

[P Esecea:

Esec
3 Fy

T=

The valueof ¢; at any point (z,z) of a cruciform flange is
assumed from appendix A to be as in equation (A36c)

t/b) 5 km 22 4Kz
=914 + 24 1+lc2<1”3ﬁ>sn2(L )

TT2(1+ )
where k? is a parameter lying between 0 and 1 which specifies
the amount of twist,

__f"ﬂ da
Jo J1—Fsin’a

m2=12l:e,,,. og/_'l’)?] K(1+A2)<4’)

As soon as a value is assigned to k? corresponding to a certain
amount of twist, the quantities K and m? are fixed and e,
may be computed.

Over most of the length of the column, sn (4—§T> ~1 and,

therefore, the variation of e, with « may be negleeted by
taking

_ Wy  omr 5 km? _>
“=sitwT1ztaa 12\ 5
o . .. d¢
The shear strain vy arises from the twist dx of the flange

after buckling and is proportional to the distance 7 away
from the center line of the cross section:

d¢

= 2’(11

However for insertion into the formula for strain intensity,
a value of 4? is desired which is independent of . Such a
value may be obtained by taking the average value of +*
over the thickness. The mean value of v? over the cross

section is
_ 1 d¢ _PrdeV 'Yb
r= ft/24 (d )d 3\dz b)
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From the theory of appendix A (equation (A31)),

\/"5' km
PG IR

over most of the section for which sn (4—115—%)% 1. Hence

—*z_i(i * k*m?
T=19\5) 1k

and thus the strain intensity \/ ez2+13: is completely de-

termined as soon as a value of the parameter * is selected.

From the stress-strain relation the value of the stress
intensity and of course £y, is determined by the value of
the strain intensity. (The clastic modulus E is used if the
strain intensity is decreasing.) The stress o, may then be
computed by the relation o,=IFyece, as a function of the
z-coordinate across the flange. The average value of o,
across the width of the flange is then

1 (°
Tqp=— EI; o, dz

and is the average stress that would be determined from a
testing machine at the value of % selected.

In the actual calculations, the width & of the flange was
divided into ten equal strips and the value of o, was found
by a numerical summation. As the twist of the flange
varies from zero to infinity, the parameter k* varies from
zero to 1. The value of ¢, may be investigated as a func-
tion of k* and will have a maximum at some value of k2
This maximum value of o, multiplied by the total area
gives the maximum load for the cruciform flange under
consideration.
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